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The evolution of artificially generated localized disturbances in the shape of hairpin
vortices, in laminar axisymmetric rotating shear flows, is investigated experimentally.
The results are compared with the predictions of a theoretical model (Levinski
& Cohen 1995) with respect to the growth of such disturbances. Hairpin vortices
were generated at the surface of the inner cylinder of an axisymmetric Couette
apparatus, employing an injection–suction technique. The flow field was analysed
from flow visualization using top and side views and by measurements of the mean
and instantaneous velocity fields, carried out using laser Doppler anemometry and
particle image velocimetry. An instability domain, within the range of base flow
parameters where the flow is known to be linearly stable, was found. The marginal
ratio between the angular velocities of the inner and outer cylinders beyond which
the flow is stable to finite-amplitude localized disturbances agrees with the theoretical
prediction based on the measured mean flow in the region of the disturbance. The
dependence of the hairpin’s inclination angle on the ratio between the two angular
velocities is fairly well predicted by the theoretical model.

1. Introduction
In the present paper, the evolution of finite-amplitude localized disturbances in

laminar rotating shear flows is investigated experimentally. This is a sequel to the
theoretical contribution of Levinski & Cohen (1995, hereinafter referred to as LC).
Specifically we study the growth of artificially generated localized disturbances with
the shape of hairpin vortices. Side and top views of these vortices, generated in our
apparatus, can be seen in figure 4 which will be discussed later.

Prior to the first published observations of hairpin vortices, Theodorsen (1952)
suggested such structures, inclined at 45◦ to the mean flow direction, as a conceptual
model for rationalizing momentum transport in turbulent boundary layers. In 1967,
Kline et al. revealed these well-organized vortex structures in the near-wall region
of a turbulent boundary layer. Following this pioneering work, these structures were
reported by a growing list of researchers who suggested hairpin type vortices as
one of the basic flow structures of turbulent boundary layers. Although other kinds
of vortical structures have been reported in the literature (e.g. ‘one-legged hairpin’:
Robinson 1991, ‘funnel-shape’: Kaftori, Hetsroni & Banerjee 1994), here we shall
focus on symmetrical hairpins. In order to examine carefully the development of these
vortical structures, Acarlar & Smith (1987a, b) conducted a series of experiments in
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which hairpin vortices were artificially generated in a subcritical laminar flat-plate
boundary layer. They illustrated that many of the flow patterns generated by the
symmetric hairpin vortices in a laminar boundary layer appear markedly similar to
fully developed turbulent boundary layer flow patterns. For a detailed review on the
subject, the reader is referred to the brief summary of papers given in the article by
Head & Bandyopadhyay (1981), and the review articles by Robinson (1991) and by
Smith & Walker (1995).

In this paragraph we list the main findings from previous studies which are relevant
to the present paper. Hairpin vortices are formed naturally in turbulent boundary lay-
ers and may be generated artificially in laminar boundary layers. These vortical struc-
tures consist of a pair of counter-rotating ‘legs’ joined by a relatively short ‘head’ seg-
ment. Hairpin vortices were found to be inclined at 45◦ to the main flow direction, and
remain identifiable even at high Reynolds numbers of the order of Reθ ' 10000 (Head
& Bandyopadhyay 1981). In time these vortices grow and extend throughout a sub-
stantial part of the boundary layer and beyond it. In laminar boundary layers, it
was found that their shape and inclination angle are independent of the method
used to excite them (Acarlar & Smith 1987a, b). Because of their dipole structure and
their non-wall-normal orientation, the hairpin vortex can function as a pump that
transports low-momentum fluid (in between its legs) from the wall to the outer region
of the boundary layer.

In order to understand the mechanism leading to the rapid growth of hairpin
vortices in boundary layers, LC focused on the evolution of localized disturbances, all
dimensions of which are much smaller than the length scale characterizing variations
of the basic (unperturbed) fluid-velocity gradient. The velocity field (UT ) is represented
by the sum UT = U + u, where U is the base flow field and u is a localized finite-
amplitude velocity perturbation. In addition, LC used the fluid impulse integral to
characterize the disturbance. Its definition is

p =
1

2

∫
r × ω(r)dV , (1)

where r is the position vector, ω = ∇× u is the disturbance vorticity vector, dV is a
volume element, and the integration extends over the entire fluid domain.

The fluid impulse is an appropriate characteristic of localized vortex structures since
it combines the geometrical dimensions of the structure with the intensity of its vorti-
city field. Moreover, in unbounded three-dimensional flows, its value is not modified
by self-induced motion (Batchelor 1967). Consequently, the evolution of the fluid
impulse satisfies a linear equation, even though the fluid motion itself is governed
by inherently nonlinear effects. While the integral character of the fluid impulse does
not provide the details of flow within the disturbed vortical region, this insensitivity
yields, in turn, some universal properties.

Utilizing the compactness of the disturbance, the vorticity equation has been
integrated analytically, leading to the evolution equation for the fluid impulse

dp

dt
= −∇(p ·U )− 1

2
Ω× p. (2)

The vectors U and Ω are represented here by the leading terms of the respective
Taylor-series expansions of the base flow in the vicinity of the moving disturbance.

Analysis of this equation shows that unidirectional planar shear flows are always
unstable with respect to finite-amplitude localized disturbances. Furthermore, the
analysis predicts that the growing vortex is inclined at 45◦ relative to the base flow
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direction. These predictions agree with existing experimental observations concerning
the growth of hairpin vortices in laminar and turbulent boundary layers. Finally,
the above vector equation is equivalent to a system of coupled linear equations for
the respective streamwise and cross-stream scalar components of the fluid impulse.
Analysis of this system suggests a simple feedback mechanism by which one com-
ponent of the fluid impulse enhances the growth of the other and vice versa. Thus,
the dynamics of the localized vorticity disturbance is governed by two mechanisms:
one is the lift-up of the disturbance in the cross-stream direction which stretches the
basic spanwise vorticity field and thus generates a disturbance-vorticity component
in the cross-stream direction; the other mechanism is associated with the stretching
and rotation of this disturbance vorticity by the basic shear field. This intensifies
the streamwise vorticity component which in turn induces an increased cross-stream
velocity, thereby enhancing the lift-up effect and closing the feedback loop.

The purpose of the present work is to validate the predictions of the above
mentioned theoretical model. Here we shall focus on axisymmetric rotating shear flow
rather than planar unidirectional flows, because according to our previous studies no
stability domain exists for finite-amplitude localized disturbances in the latter case.
Such a stability domain does exist in rotating flows owing to the additional dynamic
effects resulting from rotation. In the following sections we present the instability
criterion associated with this type of flow (§ 2) and then we examine it experimentally
(§§ 3–5).

2. Application of the theory to axisymmetric rotating shear flows
In cylindrical polar coordinates (r, φ, z), the external velocity is assumed to be given

by U = (Ur,Uφ,Uz) = (0, V (r), 0). We subject this base flow to a three-dimensional
localized disturbance, positioned at a radial distance r = rd. We use a coordinate
system attached to the disturbance and rotating with it, at an angular velocity
Ωd = V (rd)/rd. In the rotating frame, the base flow variables are denoted by the tilde.
Accordingly, the expressions for the basic velocity and vorticity are

Ũ = (0, V (r)− Ωdr, 0) and Ω̃ = (0, 0, Ω − 2Ωd) . (3)

For this case, the time evolution of the fluid impulse of the disturbance is given by
LC

dp

dt
= −∇(p · Ũ )− 1

2

(
Ω̃+ 2Ωd

)
× p, (4)

where Ωd = (0, 0, Ωd) and the base flow variables are evaluated at rd.
Equivalently, the time evolution of the three components of the fluid impulse

(Pr, Pφ, Pz) is described by the following set of equations:

dPr
dt

= − 1
2
Pφ

(
∂V

∂r
− 3

V

r

) ∣∣∣∣∣
r=rd

(5a)

dPφ
dt

= − 1
2
Pr

(
∂V

∂r
+
V

r

) ∣∣∣∣
r=rd

(5b)

dPz
dt

= 0, (5c)
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for which the eigenvalues {λi}3i=1 can be found from the characteristic equation

λi

{
λ2
i − 1

4

[(
∂V

∂r
− 3

V

r

)(
∂V

∂r
+
V

r

)] ∣∣∣
r=rd

}
= 0. (6)

Hence, the flow under investigation is stable with respect to three-dimensional loca-
lized disturbances only if the real part of λi is not positive, which leads to the following
stability criterion: [

∂V

∂r
− 3

V

r

] [
∂V

∂r
+
V

r

] ∣∣∣
r=rd
6 0. (7)

It should be noted that according to the Rayleigh criterion for stability, only the sum
of the terms in the second brackets of (7) must be positive.

The general solution of (5) is

Pr = 1
2

(
Pr(0)− βPφ(0)

)
eλt + 1

2

(
Pr(0) + βPφ(0)

)
e−λt, (8a)

Pφ = −1

2

(
Pr(0)

β
− Pφ(0)

)
eλt +

1

2

(
Pr(0)

β
+ Pφ(0)

)
e−λt, (8b)

Pz = Pz(0), (8c)

where Pr(0), Pφ(0) and Pz(0) are the initial fluid impulse components at t = 0 and

λ =
1

2

((
∂V

∂r
− 3

V

r

)(
∂V

∂r
+
V

r

) ∣∣∣
r=rd

)1/2

,

β =

((
∂V

∂r
− 3

V

r

) ∣∣∣
r=rd

/ (
∂V

∂r
+
V

r

) ∣∣∣
r=rd

)1/2

. (9)

For times much greater than 1/λ, the exponentially growing terms in (8) become
dominant and consequently the solution for the fluid impulse can be approximated
as

Pr = −βPφ, (10)

independent of the initial value of the fluid impulse.
Since the fluid impulse vector is perpendicular to the plane of any vortex dipole

such as the hairpin one, the latter is predicted to be inclined to the radial direction at
an angle Θ, which is determined by

Θ = arctan

(
− Pr
Pφ

)
= arctan(β). (11)

Thus, unlike plane shear flows in which the inclination angle of the hairpin vortex is
predicted to be 45◦ (LC), this angle in the case of rotating shear flows is found to be
a function of the base flow parameters and the position of the disturbance.

In the following sections, the predictions of the stability criterion (7) and the
inclination angle of the vortex disturbance (11) are examined experimentally.

3. Selection of parameters
In order to verify experimentally the theoretical predictions, the stability of Couette

flow between two concentrically rotating cylinders with respect to localized distur-
bances is investigated.
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Figure 1. Stability diagram for axisymmetric Couette flow. The dashed line corresponds to Rayleigh’s
criterion. The solid line corresponds to the curve of marginal stability of the flow with respect to
small-amplitude viscous disturbances. The upper boundary of the shaded area is given by (17).

3.1. Base flow parameters

For axisymmetric Couette flow, the azimuthal component of the basic velocity is
given by (Koschmieder 1993, p. 211)

V (r) =
ΩoR

2
o − ΩiR2

i

R2
o − R2

i

r +
(Ωi − Ωo)R2

oR
2
i

R2
o − R2

i

1

r
, (12)

where Ri and Ro are the radii of the inner and outer cylinders, respectively, and Ωi
and Ωo denote the angular velocity of rotation about the common axis of the two
cylinders.

The stability criterion in this case is obtained by substituting (12) into (7):

(ΩoR
2
o − ΩiR2

i )

[
(ΩoR

2
o − ΩiR2

i ) +
2(Ωi − Ωo)R2

oR
2
i

r2
d

]
> 0. (13)

In his experimental work, Coles (1965) distinguished the region of parameters in
which the flow is dominated by rotation of the outer cylinder from the region where
the flow is dominated by rotation of the inner cylinder. In the latter case, he reported
that transition to turbulence occurred through the process of slow spectral evolution
associated with Taylor instability, whereas for flows dominated by the rotation of the
outer cylinder, transition occurred only when sufficiently strong disturbances were
present. Here we shall concentrate on this case and to ensure that Taylor instability is
avoided we choose the parameters so that the flow is stable according to the Rayleigh
inviscid criterion.

The Rayleigh criterion predicts the flow to be stable only if both cylinders rotate
in the same direction and

ΩoR
2
o > ΩiR

2
i . (14)

The criterion is shown schematically in figure 1 by the dashed line, where the region
of stability is to the right of it. In the figure we also include the curve of mar-
ginal stability (solid line) of viscous Couette flow with respect to all kinds of small-
amplitude disturbances.
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To the right of Rayleigh’s criterion (our region of interest), the sum of terms within
the first parenthesis of (13) is positive and therefore the criterion for stability (13) is
reduced to

ΩoR
2
o(2R

2
i − r2

d) 6 ΩiR
2
i (2R

2
o − r2

d). (15)

Provided the initial position of the localized disturbance rd >
√

2 Ri, the above
expression (15) is satisfied and the flow is stable in this region. However for rd <

√
2Ri,

the flow becomes unstable if

Ωi < Ωo
R2
o

R2
i

2R2
i − r2

d

2R2
o − r2

d

(16)

and relation (14) holds.
When rd = Ri, the instability criterion is

Ωi/Ωo < R2
o/(2R

2
o − R2

i ). (17)

Thus, as the angular velocity of the inner cylinder is decreased below this value,
instability, which first occurs in the region adjacent to the inner cylinder, begins. The
shaded area in figure 1 corresponds to the region where we anticipate the flow to be
unstable with respect to finite-amplitude localized disturbances. The upper boundary
of this area is given by (17). The experiments reported in the following are focused
on this regime of the base flow parameters.

3.2. Disturbance flow parameters

In order to estimate the size of the initial disturbance, one has to take into account
the effect of viscosity. As was shown by LC, the formal inclusion of the viscous term
in the vorticity equation does not contribute to the dynamics of the fluid impulse
associated with the localized disturbance. However, viscosity plays a crucial role in
the generation of the initial localized disturbance. To estimate this effect we consider
the structure of horseshoe or hairpin vortices in relation to the theoretical assumption
(LC) that the concentrated disturbed vorticity is confined to a small region.

Based on flow visualization experiments, this vortical structure consists of a pair
of counter-rotating legs, joined by a relatively short ‘head’ segment. For such dipole
vortical configurations, the cross-section radius of each leg (rc) must be smaller than
the distance between the centres of the two legs (d). Otherwise, viscous diffusion can
lead to vorticity cancellation and to the elimination of the vortex.

In equilibrium, the thickness of each leg can be obtained from the balance of two
opposite processes: the cross-section expansion of each leg due to viscous diffusion
and its reduction due to the stretching of the vortex. The expansion due to viscous
diffusion can be estimated from the solution of the diffusion equation, i.e. r2

c ∼ 4νt,
where ν is the kinematic viscosity. Thus, the rate at which the cross-section radius of
each leg is increased is given by (

drc
dt

)
dif

∼ 2
ν

rc
. (18)

On the other hand, the long-time behaviour of (5) implies that

d|p|
dt
∼ λ|p|. (19)

As a first approximation we assume that the main contribution to the time variation
of the fluid impulse is due to the stretching of the hairpin vortex along its axis. Thus,
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(19) can be replaced by dl/dt ∼ λl, where l is the length of the vortex. Furthermore,
assuming that during the stretching of the vortex, the volume of its legs ( ∼ lr2

c )
remains constant, we obtain (

drc
dt

)
str

∼ − 1
2
λrc. (20)

The resulting approximation for the equilibrium cross-section radius is obtained by
equating (18) with (20)

r2
c ∼ 4ν

λ
. (21)

For a two-dimensional plane shear layer, for which λ = 0.5 dU/dy (LC), the equili-

brium cross-section radius becomes rc ∼ 2.8(ν/(dU/dy))
1/2

. Acarlar & Smith (1987a, b)
measured the average vorticity within the core of each leg and its associated circulation
(Γ ). They reported that ω/(dU/dy) = 0.88±0.12 and Γ/ν = 65±30. Thus, the result-

ing average value of the measured core radius is rc = (Γ/(πω))
1/2

= 4.8(ν/(dU/dy))
1/2

.
This relationship is similar to the one suggested by the above approximation. Fur-
thermore, the crude estimation of the core radius agrees with the lower limit found
by Acarlar & Smith (1987a, b) and is 1.7 times smaller than the averaged measured
value.

As was mentioned above, the distance between the two legs (d) must be larger than
the core size of each leg. Therefore, for axisymmetric Couette flow, for which the inner
cylinder is assumed to be stationary and the disturbance is positioned at Ri, our
estimation (21) gives

d > 2
(ν
λ

)1/2

= 2

(
ν(R2

o − R2
i )

ΩoR2
o

)1/2

. (22)

The artificially generated disturbance is positioned at Ri, since according to the
theoretical prediction, instability first occurs in the region adjacent to the inner
cylinder.

The characteristic upper value of the outer angular velocity is about 60 r.p.m. This

leads to a minimal size of the disturbance (in water) of dmin ∼ ((Ro − Ri)/Ro)1/2
mm.

Although only local effects are investigated, and for this reason any gap size Ro −Ri,
could be selected, we decided to use a narrow-gap apparatus to ensure the two-
dimensionality of the basic (mean) field. Accordingly, the gap size, the radius of the
inner cylinder and the height of the apparatus were chosen to be 0.9, 5 and 24 cm,
respectively, which by the use of (22) leads to dmin ∼ 0.5 mm. Therefore, to avoid the
effect of viscous diffusion and to ensure that the characteristic scale of the disturbance
is much smaller than the spatial scale of the base flow, the size of the disturbance
must be about 1–3 mm.

4. Experimental setup
4.1. Apparatus and measurement techniques

An axisymmetric Couette apparatus consisting of two concentrically rotating cylinders
was built, using water as a working fluid. Hairpin vortices were generated at the inner
cylinder by applying suction through two small holes, positioned along the cylinder’s
axis, and by injecting fluorescent dye through an additional hole located in between.
Top- and side-view pictures of the flow were taken with CCD cameras. Measurements
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Figure 2. Schematic cross-sectional side view of the Couette apparatus.

of the mean and instantaneous velocity fields were carried out using LDA (laser
Doppler anemometry) and PIV (particle image velocimetry) techniques.

A schematic cross-sectional side view of the Couette experiment is shown in
figure 2. The apparatus was designed to rotate two coaxial (inner and outer) cylinders
independently. Each cylinder was supported by ball bearings on each side and driven
from below. They were connected to DC motors via belts and worm gears. The
angular velocities of the cylinders were controlled by regulating the voltage to the
motors. For the present investigation, the outer rotation was varied between 20 and 70
r.p.m., while the inner ran from 0 to 50 r.p.m. Their velocities were monitored during
experiments and typically varied less than 0.2% for the duration of measurements.

The apparatus was designed for two geometrical configurations, that with a wide
gap and that with a narrow gap between the two cylinders. The inner cylinder of the
apparatus had an outside diameter of 100 ± 0.1 mm while the outer cylinder had an
inside diameter of 190 ± 0.1 mm leaving a gap of 45 mm between them. The length
of this gap was 430 mm, giving a meridional cross-section with an aspect ratio of
about 10. The narrow-gap configuration, whose purpose was to minimize end effects,
included a Plexiglas insert with an inside diameter of 118 ± 0.1 mm and a length of
240 mm, which reduced the gap to 9 mm and made the aspect ratio 27. The top and
bottom ends of the narrow gap were also separated a significant distance from the



Evolution of a localized vortex disturbance. Part 2 359

corresponding endwalls, which rotate with the outer cylinder and thus do not make
suitable end conditions for the theoretical profile (12).

The apparatus was specifically designed to allow top and side views of hairpins
for flow visualization from an observing video camera which could rotate with the
inner cylinder. For flow visualization purposes, the hairpins were coloured with a
fluorescent dye (a mixture of flourescein and alcohol that had a specific gravity of 1)
and illuminated from the side by focusing UV light from black light lamps through
the transparent middle section of the outside cylinder. In addition, a non-rotating
triggerable CCD camera was used to capture digital images of the dyed hairpins
when illuminated by a laser light sheet, as discussed below.

The azimuthal velocity in the gap was measured with a backscattering dual beam
LDA fibre optic system purchased from Dantec and processed using their Burst
Spectrum Analyzer. The LDA experiments were conducted in water uniformly seeded
with 2 and 4 micron Polystyrene spheres. Because their specific gravity is close to
that of water, they could remain suspended during a full set of LDA measurements
which could take several hours. The LDA system was used with a 5 W argon ion laser
operating at 2 W. The beam was split, frequency shifted for directional measurement,
passed through a beam expander and focused through a 600 mm focal length lens.
The two resulting beams converged through a Plexiglas window attached to the top
end of the outer cylinder and intersected each other to define an ellipsoidal probe
volume with its major axis parallel to the axes of the cylinders. The length of the
major axis was 3.2 mm while the diameter of the probe volume was 0.15 mm. The
positioning of this volume would vary ±0.1 mm in the radial direction due to optical
non-uniformity of the window. Because the probe location would oscillate as the outer
cylinder (and attached window) rotated, exact integer ratios between the outer and
inner cylinder rotation rates were avoided. Over long sampling times, this eliminated
an unwanted link between the probe’s angular position relative to the suction holes
on the inner cylinder and its radial location, and made it such that the data were
effectively averaged over ∆r 6 0.35 mm.

LDA velocity data for the bulk of the work presented was phase-locked with respect
to the angular position of the suction holes on the inner cylinder. With the help of a
reference trigger signal, the occurrence times of Doppler bursts (velocity data) were
converted to map the corresponding angular distances of the probe volume (data
locations) from the suction holes on the inner cylinder.

Particle image velocimetry (PIV) was implemented to demonstrate the nature of
the flow induced by hairpins in rotating flows. For this purpose, a laser light sheet
was passed through the Plexiglas side of the outer cylinder illuminating the midplane
of the cylinders which cuts between the two suction holes (and bisects hairpins at
their heads). The light sheet was produced by deflecting a shuttered argon ion laser
beam on a rotating polygon mirror (whose speed was computer controlled) and
subsequently passing the beam through a cylindrical lens so that it would trace a
rectilinear sweep over just the region of interest. The sweeping beam was shuttered
so that only a pair of consecutive high-intensity sweeps would be produced for the
duration of two video frames, even though there would be many more sweeps in
that time interval when the mirror would rotate at high speed. The illuminated plane
was imaged from above on a double frame cross-correlation CCD camera. Each
pair of high-intensity sweeps exposed two individual frames which were subsequently
processed with a cross-correlation algorithm to produce vector maps of the flow field.
A setup similar to what is described above, but with the light sheet thickness increased
to 7 mm (illuminating whole hairpins including their legs), rather than 0.5 mm, was
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Figure 3. Profiles of the mean azimuthal velocity measured at z = 0 mm when Ωo = 30 r.p.m. 4,
Ωi/Ωo = 0; �, Ωi/Ωo = 0.25; �, Ωi/Ωo = 0.51; ◦, Ωi/Ωo = 0.7; 5, Ωi/Ωo = 0.8.

used for capturing digital images of dyed hairpins for the purpose of measuring their
angles of inclination.

The PIV experiments utilized 10–20 micron silver-coated hollow glass spheres which
on average are slightly heavier than water and have a density which increases with
particle diameter. To obtain meaningful velocity measurements on the spatial scale of
the hairpin, a seeding concentration of about 4 particles per 1 mm3 was used. Since
water seeded (if the particles are uniformly distributed) to such a degree would scatter
the light too much on the 215 mm path from laser sheet to camera, measurements
were taken when a significant portion of the particle population had settled, leaving
the upper layers of the apparatus relatively free from scattering particles.

4.2. Mean velocity field

To check the quality of the apparatus, mean profiles of the azimuthal velocity
component V (r) were obtained for various ratios of Ωi/Ωo and compared with the
theoretical solution (12). The velocity profiles, normalized by the velocity of the
outer cylinder Vo, are shown in figure 3 for the case in which Ωo = 30 r.p.m. The
symbols represent the measured data points while the solid lines are the corresponding
theoretical profiles. In general, the agreement is fairly good, in particular when the
inner cylinder is stationary (Ωi/Ωo = 0) and close to the solid-body rotation limit
(Ωi/Ωo = 1). In between these two limits there is a slight deviation of the measured
points from the theoretical curve. Similar results were obtained for higher values
of Ωo where this deviation becomes more pronounced. The deviation between the
measured velocity and the axisymmetric Couette solution is due to end effects. Such
a deviation (although very small: about 2–3%) is still present even for experiments
carried out with an apparatus having an extremely large aspect ratio of 233, an order
of magnitude larger than that used in our apparatus (Escudier, Gouldson & Jones
1996).

Comparing mean velocity profiles measured over a spanwise distance of ±15 mm
(an order of magnitude larger than the typical size of the disturbance), shows that
the mean velocity field is essentially two-dimensional. In addition, all profiles increase
monotonically with the radial distance and therefore are stable according to Rayleigh’s
criterion. These characteristics of the measured mean velocity field are consistent with
the flow conditions assumed in §§ 2 and 3.
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(a)

(b)

Figure 4. Side (a) and top (b) views of a hairpin in axisymmetric Couette flow when the inner
cylinder is stationary and Ωo = 40 r.p.m. The suction level is 1.47 ml s−1. The outer surface of the
inner cylinder is indicated by the black arc in (b). The region of generation is on the left and a
marker on the surface of the inner cylinder at φ = 15◦ appears to the right.

4.3. Generation of the disturbance

In order to generate hairpin vortices, we use an injection–suction technique. For this
purpose, a horizontal plate was mounted on the top end of the inner cylinder’s shaft
so that it would rotate with the inner cylinder (see figure 2). This plate served as
a stand for a dye injection unit and a displacement type suction pump which were
placed on it. The injection unit consisted of a 2l reservoir filled with dilute dye. The
dye was injected perpendicularly to the inner cylinder wall through a small hole of
diameter 0.5 mm. The dye ran from the reservoir to this hole through a capillary tube
under the influence of gravity. The rate of the dye flow was controlled by a valve
and monitored by a flow meter mounted on the horizontal plate. Two additional
small holes of 1.5 mm in diameter were located 3.5 mm above and below the dye
injection hole (in the direction of the cylinder’s axis) on the inner cylinder. These
holes served for the suction of water around the injection area. The holes were
connected through two tubes which ran inside the inner cylinder to the pump unit.
The unit consisted of separate pump heads for each line, but mounted on the same
shaft of a DC motor. In this way, the amount of flow through each suction hole could
be balanced by adjusting the stroke displacement volume of a pump head, while the
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overall amount of suction applied was varied by controlling the voltage to the motor.
The water that the pump removed was fed back to the system at the lower end of
the apparatus.

Hairpins were generated by applying continuous suction to the two holes on either
side of the injection hole and by the rotation of the inner and outer cylinders. The
values of suction given in this paper refer to the net flow rate through these two
holes combined. For a given injection rate and set rotation speeds, a high enough
suction level could be applied to keep the flow steady and cause the injected dye to
flow in a small and enclosed region adjacent to the wall. Operating at reduced levels
of suction caused the expansion of the coloured region and the initiation of periodic
shedding of hairpin vortices. The basic structure of a typical growing hairpin vortex
is seen in figure 4 where a simultaneously recorded side and top view is presented.
It was generated under the conditions of Ωi = 0, Ωo = 40 r.p.m., suction at 1.47
ml s−1 and with the injection of a dilute flourescein dye at 1.4 ml min−1. The flow is
from left to right, so the region of generation is on the left and the hairpin is in the
centre. The spot to the right is a marker indicating an azimuthal angle of 15 ◦ from
the suction location. (The image of the marker appears much larger than its actual
size because of the intensity of the light reflected from it.) The width of the hairpin,
which measures about 2 mm, is roughly equivalent to the size of the straight portion
at the head of the hairpin in the lower view. As can be seen from the side view, the
legs form a roughly triangular shape, probably due to the influence of the upstream
hairpin.

The velocity field in the (r, φ)-midplane lying between the two legs and bisecting
a hairpin at its head, is shown in figure 5. The measurements were obtained by PIV
under the conditions of Ωi = 0, Ωo = 23 r.p.m. and suction at 1.47 ml s−1 (no injection
was applied). The vector map (Vφ, Vr) of total velocity is shown in figure 5(a), while the
map associated with the disturbance field, obtained by subtracting the unperturbed
shear flow, is depicted in figure 5(b). The azimuthal location of the suction holes
on the inner cylinder (indicated by the solid curve) is marked s. As observed in
figure 5(a), downstream of the suction holes, the fluid surrounding the hairpin is
ejected outwards, in the radial direction away from the inner cylinder. This ejection,
which resembles the bursting phenomenon observed in turbulent boundary layers, is
in fact a superposition of the unperturbed flow and the flow induced by the hairpin
(figure 5b). The latter consists of an upstream and outward induced velocity between
the legs and a vortex flow around its head. As the hairpin travels downstream along
the azimuthal direction (figure 5c) it grows (the induced velocity field between its legs
occupies a larger region) and moves away from the wall (note the difference in the
radial scales between figures 5b and 5c).

In order to examine the influence of injection rates on the generation of hairpin
vortices, the boundary indicating to what level the suction had to be reduced for the
initial appearance of hairpins was measured for different dye injection rates. Shown
in figure 6 are three cases for which the inner cylinder was kept stationary while
the outer cylinder was rotated at Ωo = 20, 40 and 60 r.p.m., and one case for which
Ωo = 40 r.p.m. and Ωi/Ωo = 0.27. As can be seen, for a given Ωo, there is a range
of injection rates for which the suction level corresponding to the first observation
of hairpin vortices is approximately constant. We chose to work within this range
and selected the injection rate to be 1.2 ml min−1 for all cases. The purpose of the
suction was to form a small, locally separated region attached to the inner cylinder
which caused the generation of the initial vortex disturbance. In that respect, the
purpose of the injection was mainly to mark the vortical disturbance. In fact, the
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Figure 5. The velocity field, obtained by PIV, in the (r, φ)-midplane lying between the two legs and
bisecting the hairpins at their heads. The inner cylinder is stationary, Ωo = 23 r.p.m. and the suction
level is 1.47 ml s−1. (a) The vector map (Vφ, Vr) of total velocity, (b) the vector map associated with
the disturbance field, (c) same as (b) but at a later time.

difference between the volumetric suction and injection flow rates was two orders of
magnitude. Moreover, using the PIV setup to visualize the situation when no injection
was applied, the first appearance of hairpin vortices for the case of Ωo = 40 r.p.m.
occurred at almost the same suction level as for the case with a small amount of
injection. This measurement is indicated in figure 6 by the full circle.
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Figure 6. Variation of the suction levels, corresponding to the first observation of hairpin vortices,
as function of the dye injection rate. �, Ωo = 20 r.p.m., Ωi/Ωo = 0; ◦, •, Ωo = 40 r.p.m., Ωi/Ωo = 0;
�, Ωo = 60 r.p.m., Ωi/Ωo = 0; 4, Ωo = 40 r.p.m., Ωi/Ωo = 0.27.

5. Results
In this section we present results of a series of experiments carried out in order to

carefully examine the predictions of the model described in § 2.

5.1. The instability domain

First we establish the range of parameters associated with the local mean flow over
which hairpin vortices are observed. For given Ro and Ri, the local mean flow is
determined by the angular velocities of the inner and outer cylinders and the level of
suction applied.

The domain of instability is shown in figure 7 for the case in which Ωo = 40 r.p.m.
For a given ratio Ωi/Ωo, the suction level applied initially was sufficient to keep the
injected fluid in a small, well-defined region adjacent to the wall. In the next step, the
level of suction was gradually reduced until hairpin vortices were first observed. The
suction level at this point is marked by the circle symbols. Owing to hysteresis effects,
this upper boundary, separating flow with and without hairpins, was not uniquely
determined by the suction level. Thus, the transition from flow with hairpins to flow
without, while increasing the suction level, was higher (square symbols) than that
found by going in the opposite direction (circle symbols).

When the suction was further decreased below the level indicated by the circle
symbols, the shedding of hairpin vortices persisted over a certain range. At the lower
boundary of this range, a transition from shedding hairpins to a continuous jet of
dye without any apparent hairpin structure was observed. The triangle and plus
symbols in figure 7 correspond to the upper and lower limits, respectively, of this
transition zone. In contrast to the hysteresis effects associated with the determination
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Figure 7. Domain of instability when Ωo = 40 r.p.m., described in terms of the suction level and
the ratio Ωi/Ωo. The shaded area represents the range of parameters over which hairpin vortices
could be clearly observed.

of the upper boundary of the instability domain, the boundaries of the transition
zone, associated with the lower boundary of the instability domain, correspond to a
suction level above which one can clearly distinguish the shedding of hairpins (upper
limit), and below which, the flow of a continuous jet (lower limit). The shaded area in
figure 7 represents the range of parameters over which hairpin vortices were always
clearly distinguished and observed.

The upper boundary of the instability domain (the shaded area in figure 7) for
the cases where Ωo = 23, 40 and 60 r.p.m. are shown in figure 8(a). The bottom
boundary for each case is marked by the same symbol as that of the corresponding
upper boundary, except that it contains the plus sign within it. It is seen that the
bottom boundary is approximately a constant and does not depend on Ωo. On the
other hand, the upper boundary increases monotonically with Ωo and thereby the
region of instability is increased.

When the suction level associated with the upper boundary is made dimensionless,
using the ratio between the average suction velocity, Vs (the suction flow rate divided
by the area of the suction holes) and the azimuthal velocity of the outer cylinder
(Vo = ΩoRo), the data points of all three have approximately the same slope (figure 8b).
Moreover, the data points corresponding to cases for which the outer angular velocity
was greater than 20 r.p.m. follow the same curve shown by the solid line, which
represents a least-squares fit to the data obtained with Ωo = 40 and 60 r.p.m. It should
be noted that in figure 8(b), additional sets of data, corresponding to Ωo = 30, 35, 50
and 70 r.p.m., are included.

Inside the instability domain, hairpin vortices are shed periodically. The shedding
frequency is plotted in figure 9 for the case in which Ωo = 60 r.p.m. The corresponding
upper and lower boundaries of the instability region are shown respectively by the
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Figure 9. The shedding frequency of the hairpin vortices described in terms of the suction level
and the ratio Ωi/Ωo; Ωo = 60 r.p.m. The upper and lower boundaries of the instability domain are
indicated by the plus-marked circles and squares, respectively. Shedding frequency of +, 3 Hz; 4,
4 Hz; ◦, 5 Hz; �, 6 Hz. Dashed lines are fitted by least-squares error fit method.

plus-marked circles and squares. For a given ratio Ωi/Ωo, the suction level was varied
between the upper and lower boundaries of the instability region. The shedding
frequency was obtained by analysing a top-view flow visualization recording taken
with a video camera that rotated with the inside cylinder. Each frequency value was
calculated by timing the shedding of about 70 hairpins. For each value of Ωi/Ωo, the
shedding frequency as a function of the suction level varied approximately linearly and
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was curve fitted using the least-squares error fit method. This procedure was repeated
for several values of Ωi/Ωo and shedding frequencies 3, 4, 5 and 6 Hz. As can be seen
from the fitted linear dashed lines, the shedding frequency is approximately constant
along lines which are nearly parallel to each other and to the upper boundary of the
instability region. The frequency decreases towards the upper boundary (at which the
shedding frequency approaches zero).

To summarize the results up to this stage, we first conclude that we found instability
(growth of vortical structures away from the wall) in the range of parameters where
the flow is known to be stable according to the Rayleigh criterion (14), but is unstable
with respect to finite-amplitude localized disturbances as predicted by LC. Moreover,
hairpin vortices could only be generated for sufficient levels of suction, which suggests
that instability cannot occur for infinitesimal perturbations of the base flow. However,
some of the experimental results found so far do not fully agree with the theoretical
predictions. According to the results shown in figure 8(a), the right-most edge point of
the instability domain depends on Ωo and varies approximately from Ωi/Ωo = 0.4 for
Ωo = 23 r.p.m. to Ωi/Ωo = 0.6 for Ωo = 60 r.p.m., whereas, for the given dimensions of
Ri and Ro in our apparatus, the theoretical prediction for marginal stability (17), based
on the axisymmetric Couette velocity profile (12), gives Ωi/Ωo = 0.78, independent of
the angular velocity of the outer cylinder. In addition, the theoretical model applied
to the axisymmetric Couette flow does not predict the existence of the upper limit of
the instability domain found experimentally.

5.2. The local mean flow

In the following, we attempt to explain the difference between the values of marginal
stability found in the experiments (the right-most edge point of the instability domain,
see figures 7 and 8a) and the theoretical prediction based on the axisymmetric Couette
velocity profile. As was mentioned in § 2, the results of the theoretical model are general
and only depend on the local flow field in the region of the disturbance. Therefore,
we first examine the local mean flow in the region of the disturbance.

In figure 10, normalized azimuthal mean velocity profiles are plotted versus the
azimuthal coordinate for two cases where Ωo = 40 r.p.m. The signals shown in
figures 10a and 10b were measured when Ωi/Ωo = 0.45 and Ωi/Ωo = 0.6, respectively,
corresponding to positions inside and outside the instability domain. The suction level
was 1.47 ml s−1. The velocity traces were measured at z = 0 and at 16 radial positions
equally spaced between r = 50.5 (the lowest curve) and r = 58 mm (the top curve).
The origin of the azimuthal coordinate is attached to the position of the suction
holes. The deviation of the local mean flow from the undisturbed profiles (without
suction) extends approximately from −15◦ to 25◦. Relative to this range, the typical
size of the observed hairpin is an order of magnitude smaller, about 1–2 mm, which
corresponds approximately to 1◦–2◦ in the azimuthal direction. Since the shedding of
small hairpins is not correlated with the phase-locked procedure used to obtain these
mean velocity measurements, there is no qualitative difference between the signals
shown in figures 10(a) and 10(b).

The local mean flow between the two suction holes is characterized by an accelerated
flow upstream of the holes and a decelerated flow near the holes, followed by an
accelerated flow region further downstream. The observed hairpin vortices were
measured between φ = 7.2◦ and 14.4◦. These boundaries are indicated by the two
vertical dotted lines in each figure. The relatively uniform flow within this azimuthal
interval, in particular about the centre of the hairpin at r ≈ 52.5 mm, is indicative of
the azimuthal interval being sufficiently far from the strong three-dimensional flow
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Figure 10. Normalized azimuthal mean velocity profiles, measured at z = 0 and at 16 radial
positions, as function of the azimuthal coordinate. The suction level is 1.47 ml s−1, Ωo = 40 r.p.m.
and Ωi/Ωo = 0.45 (a) and 0.6 (b). The triangles represent an averaging value over the range
φ = 7.2◦–14.4◦.

at the suction holes (the region of generation), while the hairpin is still small. This
allows us to make a comparison to local theory in this location as will be further
discussed below. For most of the measurements and for a given radial position, the
azimuthal velocity over the range φ = 7.2◦–14.4◦ was averaged. The average velocities
are indicated in figure 10 by the triangle symbols at φ = 10.8◦.

The azimuthal velocity profiles in the radial direction, measured for the case in
which the suction level was 1.47 ml s−1, Ωo = 40 r.p.m. and Ωi/Ωo = 0.45 are plotted
in figure 11. The profiles, measured at φ = 10.8◦, 25.2◦ and 180◦, are shown by the
squares, diamonds and circles, respectively. Each point corresponds to an azimuthal
average over ±3.6◦. Also plotted in this figure is the velocity profile when no suction
was applied (the plus-marked squares) and the theoretical Couette profile shown by
the solid line.

As can be seen, the profile measured at φ = 180◦ is almost identical to the profile
obtained when no suction was applied. As the azimuthal angle decreases, the deviation
from this profile increases. From this figure, one can conclude that in the region of
hairpin growth (r ≈ 52.5 ± 1 mm and φ ≈ 10.8◦ ± 3.6◦), the profiles subjected to
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Figure 11. Radial distributions of the azimuthal velocity measured when the suction level was 1.47
ml s−1, Ωo = 40 r.p.m., Ωi/Ωo = 0.45 and at �, φ = 10.8◦; �, 25.2◦; ◦, 180◦. The plus-marked
squares represent the velocity profile when no suction was applied and the theoretical Couette
profile is shown by the solid line.

suction are significantly different from the profile measured when no suction was
applied. Furthermore, this difference is larger when these profiles are compared with
the Couette profile used in our preliminary theoretical prediction in § 2. Because of
this difference, in the following we shall use the local mean flow as an input to our
model instead of the axisymmetric Couette flow. For this purpose, it is also important
to note that the azimuthal variation of the local mean flow (the difference between
the profiles measured at φ = 10.8◦ and 25.2◦) is relatively negligible when compared
with the radial variation of the azimuthal velocity.

Finally, the variation of the local mean flow as a function of the azimuthal and
axial coordinates for the case where Ωo = 40 r.p.m. and Ωi/Ωo = 0.6 is presented. In
figure 12 a contour plot of (V − Vns)/Vo, the normalized difference between the local
mean flow (V ) subjected to suction (1.47 ml s−1) and the local mean flow without
suction (Vns) at the same radial position (r = 52.5), is shown. The maximum difference
occurs close to the position of the suction holes (φ = 0, z = ±3.5 mm). As can be
seen, the region enclosed between z = ±3 mm and 0 < φ < 20◦, within which we
observe the growth of the hairpin (the size of which is much smaller than the size of
this region), is characterized by having approximately a constant azimuthal velocity.
Moreover, within this region, the ratio (dV/dz)/(dV/dr) is zero at z = 0 mm and
has a maximum value of 0.03 at the boundaries (z = ±4 mm). Similar results were
obtained for different conditions, i.e. different values of Ωo and different values of
Ωi/Ωo.

In summary, the local azimuthal mean velocity profiles measured in the region
where the major growth of the hairpin takes place are significantly different from the
theoretical solution (12). This difference may explain the lack of complete agreement
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Figure 13. (a) Positions of velocity profiles measurements with respect to a schematic drawing
of the domain of instability at Ωo = 40 r.p.m. (b) Corresponding five azimuthal velocity profiles
measured along a line of constant suction level (1.47 ml s−1) at 4, Ωi/Ωo = 0.15; �, Ωi/Ωo = 0.3;�, Ωi/Ωo = 0.45; ◦, Ωi/Ωo = 0.6; 5, Ωi/Ωo = 0.8.

between the experimental results and the theoretical predictions, discussed at the end
of § 5.1. To check this possibility, the measured local azimuthal mean flow, which in
accordance with the experimental results can be considered as a function of only the
radial coordinate, will be used as an input to the theoretical model (see § 2).

5.3. The instability criterion based on local mean flow

In this section, a comparison between the instability criterion based on local mean
flow and the experimental results based on flow visualization is carried out. As
was concluded in the previous section, the azimuthal local mean velocity is given
by V = V (r). The general instability criterion for this case is given by (7). As
inferred from figure 11, the local mean profiles of the azimuthal velocity increase
monotonically with the radial coordinate. Therefore, [dV/dr+V/r] is always positive
and the Rayleigh criterion for stability holds. In this case, for instability with respect



372 E. Malkiel, V. Levinski and J. Cohen

to finite-amplitude localized disturbances, we obtain(
∂V

∂r

/ V

r

) ∣∣∣
r=rd

> 3, (23)

where rd now corresponds to the radial position of the hairpin’s centre.
To examine the local instability criterion (23) experimentally, several velocity profiles

inside and outside the domain of instability were measured. The profiles plotted in
figure 13(b) correspond to measurements carried out at Ωo = 40 r.p.m. along a line
of constant suction level (1.47 ml s−1) for five values of Ωi/Ωo, shown in figure 13(a).
The level of suction was chosen to be close to the level corresponding to the right-
hand edge point of the instability domain, delineated by the solid lines in figure
13(a). The points A and B correspond to measurements carried out when relatively
high levels of suction were applied. Additional velocity profiles were also measured
for several values of Ωo. For each value of Ωo, the velocity profiles were obtained
under conditions determined by the suction level and the ratio Ωi/Ωo, so that their
corresponding positions in relation to the boundaries of the domain of instability are
approximately the same as in figure 13(a).

Based on fitted curves shown by the solid lines in figure 13(b), the radial distributions
of (dV/dr)/(V/r) are plotted in figure 14b using the same respective symbols. Similar
profiles are also shown for the cases in which Ωo = 23 r.p.m. (figure 14a) and 60
r.p.m. (figure 14c). The vertical lines in these figures at r = 52.5 mm indicate the
radial position of the hairpin’s centre. The horizontal lines at (dV/dr)/(V/r) = 3
correspond to the marginal value for stability according to the local criterion. For
example, in the case in which Ωo = 60 r.p.m., the first three profiles for Ωi/Ωo = 0.1,
0.3 and 0.5 are all above the horizontal line and therefore are unstable with respect
to localized disturbances. The fourth curve, for which Ωi/Ωo = 0.7, is below the
horizontal line for radial positions greater than 51.5 mm. Thus, in the latter case we
expect stability. Similarly we find that for the case when Ωo = 40 r.p.m., the flow is
unstable for Ωi/Ωo 6 0.45 (diamonds, squares and upright triangles) and stable for
Ωi/Ωo > 0.6 (circles and downturned triangles). These results are in full agreement
with the experimental observations under the same conditions shown schematically
in figure 13(a).

To formally determine the value of marginal stability for a given Ωo, we use in-
terpolation to obtain the ratio of Ωi/Ωo at which the curves of (dV/dr)/(V/r) cross
the horizontal line at the radial position of 52.5 mm. In figure 15, the theoretical pre-
dictions of marginal stability (hollow circles), based on the experimentally measured
local basic velocity profiles, are compared with flow visualization results (the full
circles). The latter results correspond to the locus of the right-most edge points of the
instability domains presented in figure 8(a). Note that in figure 15 results obtained
for three additional cases in which Ωo = 30, 50 and 70 r.p.m. are also included. The
solid line represents a least-squares fit to the theoretically predicted values.

The agreement between the experimental observations and the predictions based on
the local velocity profiles is fairly good. The difference between the two is about 20%
for Ωo = 23 and 30 r.p.m., and is less than 10% for higher values of Ωo. The accuracy
in determining the marginal values based on flow visualization can be defined as the
range of Ωi/Ωo between two limiting values. For values less than the lower limit,
hairpins are always shed, while for values greater than the upper limit, hairpins are
not observed. This accuracy is about 4% for Ωo > 40 r.p.m. and is decreased to about
15% for Ωo = 23 r.p.m.

It is more difficult to estimate the accuracy of the results based on local mean
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Figure 14. Radial distributions of (dV/dr)/(V/r) for (a) Ωo = 23 r.p.m. with suction of 1.47 ml s−1

at 4, Ωi/Ωo = 0.16; �, Ωi/Ωo = 0.35; �, Ωi/Ωo = 0.45; ◦, Ωi/Ωo = 0.54; 5, Ωi/Ωo = 0.56. (b)
Ωo = 40 r.p.m. with suction of 1.47 ml s−1 at 4, Ωi/Ωo = 0.15; �, Ωi/Ωo = 0.3; �, Ωi/Ωo = 0.45;◦, Ωi/Ωo = 0.6; 5, Ωi/Ωo = 0.8. (c) Ωo = 60 r.p.m. with suction of 1.71 ml s−1 at 4, Ωi/Ωo = 0.1;
�, Ωi/Ωo = 0.3; �, Ωi/Ωo = 0.5; ◦, Ωi/Ωo = 0.7.

velocity. There are several main sources for error in this case and not all of them can
be accurately estimated. One source is the dependence of the criterion on the radial
position of the hairpin. This error is approximately 4% over a radial distance of 1 mm.
Another source is in the interpolation between curves of (dV/dr)/(V/r) above and
below the criterion. This error depends on the closeness of the profiles in the vicinity
of r = 52.5 mm to the marginal value of 3. For example, for the case of Ωo = 40
r.p.m., the error in interpolation is estimated by taking the interpolation between
the corresponding values obtained at Ωi/Ωo = 0.45 and 0.8 (or between Ωi/Ωo = 0.3
and 0.6) instead of the interpolation carried out between the corresponding values
associated with Ωi/Ωo = 0.45 and 0.6. Using this procedure for the entire sets of data
the average error due to the interpolation was estimated to be about 5%. It should be
noted that for clarity, not all of the available sets of the data are shown in figure 14.
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least-squares fit to the theoretically predicted values.
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Figure 16. Radial distributions of the ratio 0.5∆rV ′′/V ′ for Ωo = 40 r.p.m. with suction of 1.47
ml s−1 at ◦, Ωi/Ωo = 0.15; �, Ωi/Ωo = 0.3; 4, Ωi/Ωo = 0.45; ⊕, with suction of 3.36 ml s−1 at
Ωi/Ωo = 0.15; •, with suction of 2.02 ml s−1 at Ωi/Ωo = 0.45. Ωo = 60 r.p.m. with suction of 1.71
ml s−1 at �, Ωi/Ωo = 0.1; 5, Ωi/Ωo = 0.3; ×, Ωi/Ωo = 0.5; �+ , with suction of 4.96 ml s−1 at
Ωi/Ωo = 0.15; �, with suction of 2.90 ml s−1 at Ωi/Ωo = 0.45.
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In addition to the experimental errors mentioned above, there is another group
of possible errors associated with the difference between the experimental conditions
and the theoretical assumptions. The first source for such an error is related to the
assumption that the mean velocity field includes only the azimuthal component and
the latter is a function of the radial coordinate only. Using the measured local mean
velocity field, the maximum of the ratios (∂V/∂z)/(∂V/∂r) and (∂V/r∂φ)/(∂V/∂r)
are estimated to be 0.025 and 0.05, respectively. Thus, the error due to this theoretical
assumption is not significant.

The second source of error associated with the inconsistency between the theoretical
assumptions and the experimental conditions is related to the theoretical approxima-
tion of the mean velocity profile in the region of the disturbance being given by Taylor
series expansion only up to the leading term (LC). For this approximation to be valid,
the ratio 0.5∆rV ′′/V ′, where ∆r is the radius of a sphere enclosing the hairpin, must
be small. Typical radial distributions of this ratio are plotted in figure 16. According
to experimental observations, the value of ∆r is about 1.5 mm. The plus marked and
full circles correspond to measurements obtained at points A and B in figure 13(a),
respectively, when Ωo = 40 r.p.m. Similar measurements, obtained at respective points
for the case when Ωo = 60 r.p.m., are shown by the plus-marked and filled squares.
The hollow and cross symbols correspond to values obtained along the constant low
suction levels within the domains of instability (see figure 13a) for the cases in which
Ωo = 40 and 60 r.p.m.

While for the low-suction cases the error due to the theoretical approximation of
the local mean velocity is about 10%, the error is much more significant for the high-
suction cases. As can be seen from figure 16, the radial distribution of 0.5∆rV ′′/V ′
at points along the upper boundary of the instability domain is almost the same (for
both cases of Ωo) and has a maximum value of 0.35, which cannot be considered
small as assumed in the theory (LC). This may explain why, at relatively high levels
of suction, the flow becomes stable with respect to localized disturbances at values of
Ωi/Ωo smaller than the predicted value for stability based on the local mean flow.

In summary, the experimental observations of the largest values of Ωi/Ωo beyond
which the flow is stable with respect to finite-amplitude localized disturbances are
well predicted by the theory based on the local mean flow. The difference between
the two is within the expected accuracy which is about 10% for Ωo > 40 r.p.m. and
about 20% for lower values of Ωo.

5.4. The inclination angle of the hairpin

In this section, a comparison of the inclination angle of the hairpin between the
theoretical prediction based on local mean flow and the experimental results based
on flow visualization is carried out. Using the results of § 2 and substituting (9) into
(11), the inclination angle Θ between the plane of the vortex and the radial direction
is

Θ = arctan

((
∂V

∂r
− 3

V

r

) ∣∣∣
r=rd

/ (
∂V

∂r
+
V

r

) ∣∣∣
r=rd

)1/2

, (24)

where the radial position of the hairpin’s centre is rd = 52.5 mm.
The theoretical evaluation of Θ is made in a similar way to the method described

in the previous section. In other words, for various flow conditions we use curves
fitted to the measured local mean velocity profiles to obtain the velocity and its first
derivative at rd.

The experimental inclination angles were determined from top-view images of
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(a)

(b)

35°

23°

Figure 17. Inclination angles measured at r = 52.5 mm between the radial direction (the vertical
line) and a line along the axis of the vortex core. The suction level is 1.85 ml s−1 and Ωo = 60 r.p.m.
(a) Ωi/Ωo = 0.5, (b) Ωi/Ωo = 0.

hairpins after image enhancement and processing. In order to reduce the amount of
scatter in the resulting data, only symmetric hairpins were selected for measurement.
This was achieved by using simultaneously captured side views and by selecting
hairpins based on leg symmetry and position in relation to the centreline plane
between the suction holes (using the 15◦ mark).

Top views of hairpin vortices obtained for a fixed value of Ωo = 60 r.p.m. and two
angular velocity ratios of Ωi/Ωo = 0.5 and 0, with the suction level at 1.85 ml s−1,
are shown in figures 17(a) and 17(b), respectively. These images were output from an
edge-finding algorithm that was applied to the raw image files. The outer surface of
the inner cylinder is indicated by the black arcs at the bottom of each figure. The
spots on the left and right edges of each arc correspond to the position of the suction
holes (φ = 0) and a position on the inner cylinder where φ = 15◦, respectively. The
inclination angles are measured between the radial direction (the vertical line) and
a line along the axis of the vortex core in a region close to the vortex head. The
two lines cross at r = 52.5 mm. As was pointed out by Haidari & Smith (1994) and
can also be deduced from figure 4, the evaluation of the inclination angle based
on flow visualization is somewhat arbitrary owing to the curvature of the hairpin.
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Figure 18. Azimuthal variation of the inclination angle. The suction level is 1.85 ml s−1, r = 52.5 mm
and Ωo = 60 r.p.m. The hollow and filled circles represent measurements obtained when Ωi/Ωo = 0.5
and 0, respectively.

Nevertheless, we use the above definition for the inclination angle since it is the
most appropriate for the comparison with the theoretically predicted value (24). The
latter, in accordance with the integral character of the fluid impulse (1), represents
the average value of the growing part of the hairpin.

As can be seen from figure 17, the angle is decreased significantly when the angular
velocity of the inner cylinder is increased, as is predicted by the theory (24). The
respective theoretical values for the cases shown in figures 17(a) and 17(b) are 25◦ and
41◦. Thus, the measured inclination angles are within 15% of the predicted values.

A set of inclination angles measured within an azimuthal range between φ = 3◦
and 14◦, and obtained under the same conditions as those corresponding to figure 17,
is shown in figure 18. The hollow and full circles represent measurements obtained
when the angular velocity ratios were Ωi/Ωo = 0.5 and 0, respectively. The measured
angles were curve fitted (the solid lines) using the least-squares error fit method. As
can be seen, the inclination angle decreases slightly as the azimuthal coordinate is
increased. The fitted curve for the angles measured when Ωi/Ωo = 0.5 is within ±10%
of the predicted value (25◦). The fitted curve for the angles measured when the inner
cylinder was stationary is always lower (10–20%) than the predicted angle (41◦). The
scattering of the data (about 10%) is probably due to the influence of the residual
vorticity resulting from the periodicity of the annular domain.

6. Summary and discussion
In this paper, the predictions of a recent theoretical model (LC) describing the

instability of shear flows with respect to finite-amplitude localized disturbances was
examined experimentally.

Before proceeding with the summary of the results, we would like to clarify the
term ‘stability’ used in conjunction with the theoretical model (LC). According to
the theory, the term stability (instability) means that the fluid impulse of a closed
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vortical disturbance, localized in all three directions, will not grow (or grow) in time.
The above stability definition is not equivalent to the conventional criteria of linear
and energy stability. In fact, the growth of the fluid impulse does not necessarily
guarantee growth in energy of the localized disturbance or vice versa. For example,
viscous diffusion leads to the decay of the localized disturbance energy while its fluid
impulse remains the same. On the other hand, the geometrical stretching of a closed
vortex loop while its circulation remains unchanged will result in the growth of its
fluid impulse, indicating instability according to the above definition. Although this
definition, which associates the geometrical growth of localized vortical structures
with instability, cannot describe the evolution of ‘wavy’ disturbances or ‘quasi’ two-
dimensional structures for which the fluid impulse integral is not defined, it is very
suitable for describing the growth of hairpin vortices in shear flows.

According to the theoretical model, planar unidirectional flows are always unstable
with respect to finite-amplitude localized disturbances. For this reason, in this paper
we focused on an axisymmetric rotating shear flow for which a stability criterion is
predicted to exist. In addition, unlike plane shear flows in which the inclination angle
of the growing vortex is predicted to be 45◦ (LC), this angle in the case of rotating
shear flows is found theoretically to be a function of the base flow parameters.

A series of experiments was conducted in an axisymmetric Couette apparatus in
the range of parameters (Ro, Ri, Ωo and Ωi) where the flow is known to be linearly
stable, but may be unstable with respect to localized disturbances as predicted by
LC. Hairpin vortices, similar to the ones reported for the case of a laminar boundary
layer (e.g. Acarlar & Smith 1987a, b), were observed (see figure 4). The associated
instantaneous velocity field (see figure 5) resembles the bursting phenomenon observed
in turbulent boundary layers and was shown to be a superposition of the unperturbed
flow and the flow induced by the hairpin.

For a quantitative comparison between the experimental observations and the
theoretical predictions, the local mean flow in the region within which the growth of
hairpins was observed had to be used as an input to the theoretical model instead
of the axisymmetric Couette flow. Indeed, the theoretical predictions concerning the
marginal value for instability (the highest value of Ωi/Ωo beyond which the flow is
stable), based on the measured local mean velocity profiles, are in good agreement with
the experimental observations. In addition, measurements of the inclination angles
of hairpin vortices under various external flow conditions show good qualitative
agreement with the theoretical predictions.

For values of Ωi/Ωo smaller than the marginal value for stability (predicted by
the theory) and depending on the level of suction applied, a domain of instability
bounded by upper and lower boundaries (see figure 7) was found. In our experiments,
the initial vortex disturbance was generated by applying a controlled amount of
suction which caused the formation of a locally separated region attached to the
inner cylinder. Hairpin vortices were observed to grow and move away from the wall
only for sufficient levels of suction (the bottom boundary of the instability domain). In
that respect, the existence of this boundary suggests the need for a minimal size of the
separated region in order for hairpins to shed. This minimal size can be related to a
minimal amplitude of the initial disturbance which can be estimated as the difference
in velocities with and without suction at the edge of the separated flow, i.e. hdV/dr,
where h is the height of the separated region. Thus, on one hand the experimental
results do not contradict the prediction (of stability) of the linear theory and on the
other hand they support the prediction (of instability) of the theoretical model (LC)
for which the amplitude of the disturbance does not have to be infinitesimally small.
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In this respect, the instability mechanism described here can also be related to the
transition process of flows dominated by the rotation of the outer cylinder, which
as was observed by Coles (1965) occurred only when sufficiently strong disturbances
were present.

The slope of the upper boundary was found to be parallel to the slope of lines along
which the shedding frequency of the hairpins is constant. The value of the shedding
frequency is decreased towards the upper boundary, which can be considered as
the line along which the frequency is zero. Along the upper boundary, the radial
distribution of the ratio 0.5∆rV ′′/V ′ was found to be self-similar, having a maximum
value of about 0.35. This contradicts the assumption used in the theory that the
disturbance is localized such that the mean velocity field in its region can be described
by the leading term of its Taylor series expansion. This is probably the reason why
the existence of the upper boundary is not predicted by the theoretical model (LC).

Based on the experimental results, we conclude that the theoretical criterion (23) is
sufficient in predicting stability. In other words, the theory is capable of determining
the conditions under which the initial vortex disturbance will not grow. This supports
our explanation of the evolution of localized disturbances in shear flows. As was
shown by LC, the theoretical model describes a simple feedback mechanism for
the growth of localized vortical disturbances in shear flows (see § 1). The model
is general in the sense that it can be applied to any three-dimensional base flow
provided the disturbance is localized and all dimensions thereof are much smaller
than a dimensional length scale corresponding to an O(1) change of the external
(unperturbed) velocity.

However, the experimental results show that the model provides only a necessary
condition for instability. Thus, for instability to occur, more conditions associated
with the initiation of the vortical disturbance need to be satisfied. These conditions
(which are outside the scope of the present paper) are related to the local mean flow
in the region of the disturbance. In our case the local mean flow was determined by
the amount of suction applied. In laminar boundary layers, the triggering mechanism
for the initiation of hairpins was an artificial protuberance or fluid injection (Acarlar
& Smith 1987a, b) or a finite-amplitude acoustic excitation leading to subcritical
transition (Masahito & Nishioka 1995). In natural turbulent boundary layers, the
lift-up of low-speed streaks is believed to precede the bursting events (Kline et al.
1967; Landahl 1975).

The authors are grateful to Mr A. Beer and Mr E. Naimark for designing and
constructing the apparatus. The authors would also like to thank Mr A. Svizher for
his help with the data processing software.
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